↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
ss_in(Xs, Ys) → U1(Xs, Ys, perm_in(Xs, Ys))
perm_in(Xs, .(X, Ys)) → U3(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
U3(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U4(Xs, X, Ys, app_in(X1s, X2s, Zs))
U4(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U5(Xs, X, Ys, perm_in(Zs, Ys))
perm_in([], []) → perm_out([], [])
U5(Xs, X, Ys, perm_out(Zs, Ys)) → perm_out(Xs, .(X, Ys))
U1(Xs, Ys, perm_out(Xs, Ys)) → U2(Xs, Ys, ordered_in(Ys))
ordered_in(.(X, .(Y, Xs))) → U7(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U7(X, Y, Xs, less_out(X, s(Y))) → U8(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U8(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
U2(Xs, Ys, ordered_out(Ys)) → ss_out(Xs, Ys)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
ss_in(Xs, Ys) → U1(Xs, Ys, perm_in(Xs, Ys))
perm_in(Xs, .(X, Ys)) → U3(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
U3(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U4(Xs, X, Ys, app_in(X1s, X2s, Zs))
U4(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U5(Xs, X, Ys, perm_in(Zs, Ys))
perm_in([], []) → perm_out([], [])
U5(Xs, X, Ys, perm_out(Zs, Ys)) → perm_out(Xs, .(X, Ys))
U1(Xs, Ys, perm_out(Xs, Ys)) → U2(Xs, Ys, ordered_in(Ys))
ordered_in(.(X, .(Y, Xs))) → U7(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U7(X, Y, Xs, less_out(X, s(Y))) → U8(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U8(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
U2(Xs, Ys, ordered_out(Ys)) → ss_out(Xs, Ys)
SS_IN(Xs, Ys) → U11(Xs, Ys, perm_in(Xs, Ys))
SS_IN(Xs, Ys) → PERM_IN(Xs, Ys)
PERM_IN(Xs, .(X, Ys)) → U31(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
PERM_IN(Xs, .(X, Ys)) → APP_IN(X1s, .(X, X2s), Xs)
APP_IN(.(X, Xs), Ys, .(X, Zs)) → U61(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
APP_IN(.(X, Xs), Ys, .(X, Zs)) → APP_IN(Xs, Ys, Zs)
U31(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U41(Xs, X, Ys, app_in(X1s, X2s, Zs))
U31(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → APP_IN(X1s, X2s, Zs)
U41(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U51(Xs, X, Ys, perm_in(Zs, Ys))
U41(Xs, X, Ys, app_out(X1s, X2s, Zs)) → PERM_IN(Zs, Ys)
U11(Xs, Ys, perm_out(Xs, Ys)) → U21(Xs, Ys, ordered_in(Ys))
U11(Xs, Ys, perm_out(Xs, Ys)) → ORDERED_IN(Ys)
ORDERED_IN(.(X, .(Y, Xs))) → U71(X, Y, Xs, less_in(X, s(Y)))
ORDERED_IN(.(X, .(Y, Xs))) → LESS_IN(X, s(Y))
LESS_IN(s(X), s(Y)) → U91(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U71(X, Y, Xs, less_out(X, s(Y))) → U81(X, Y, Xs, ordered_in(.(Y, Xs)))
U71(X, Y, Xs, less_out(X, s(Y))) → ORDERED_IN(.(Y, Xs))
ss_in(Xs, Ys) → U1(Xs, Ys, perm_in(Xs, Ys))
perm_in(Xs, .(X, Ys)) → U3(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
U3(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U4(Xs, X, Ys, app_in(X1s, X2s, Zs))
U4(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U5(Xs, X, Ys, perm_in(Zs, Ys))
perm_in([], []) → perm_out([], [])
U5(Xs, X, Ys, perm_out(Zs, Ys)) → perm_out(Xs, .(X, Ys))
U1(Xs, Ys, perm_out(Xs, Ys)) → U2(Xs, Ys, ordered_in(Ys))
ordered_in(.(X, .(Y, Xs))) → U7(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U7(X, Y, Xs, less_out(X, s(Y))) → U8(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U8(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
U2(Xs, Ys, ordered_out(Ys)) → ss_out(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
SS_IN(Xs, Ys) → U11(Xs, Ys, perm_in(Xs, Ys))
SS_IN(Xs, Ys) → PERM_IN(Xs, Ys)
PERM_IN(Xs, .(X, Ys)) → U31(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
PERM_IN(Xs, .(X, Ys)) → APP_IN(X1s, .(X, X2s), Xs)
APP_IN(.(X, Xs), Ys, .(X, Zs)) → U61(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
APP_IN(.(X, Xs), Ys, .(X, Zs)) → APP_IN(Xs, Ys, Zs)
U31(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U41(Xs, X, Ys, app_in(X1s, X2s, Zs))
U31(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → APP_IN(X1s, X2s, Zs)
U41(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U51(Xs, X, Ys, perm_in(Zs, Ys))
U41(Xs, X, Ys, app_out(X1s, X2s, Zs)) → PERM_IN(Zs, Ys)
U11(Xs, Ys, perm_out(Xs, Ys)) → U21(Xs, Ys, ordered_in(Ys))
U11(Xs, Ys, perm_out(Xs, Ys)) → ORDERED_IN(Ys)
ORDERED_IN(.(X, .(Y, Xs))) → U71(X, Y, Xs, less_in(X, s(Y)))
ORDERED_IN(.(X, .(Y, Xs))) → LESS_IN(X, s(Y))
LESS_IN(s(X), s(Y)) → U91(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U71(X, Y, Xs, less_out(X, s(Y))) → U81(X, Y, Xs, ordered_in(.(Y, Xs)))
U71(X, Y, Xs, less_out(X, s(Y))) → ORDERED_IN(.(Y, Xs))
ss_in(Xs, Ys) → U1(Xs, Ys, perm_in(Xs, Ys))
perm_in(Xs, .(X, Ys)) → U3(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
U3(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U4(Xs, X, Ys, app_in(X1s, X2s, Zs))
U4(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U5(Xs, X, Ys, perm_in(Zs, Ys))
perm_in([], []) → perm_out([], [])
U5(Xs, X, Ys, perm_out(Zs, Ys)) → perm_out(Xs, .(X, Ys))
U1(Xs, Ys, perm_out(Xs, Ys)) → U2(Xs, Ys, ordered_in(Ys))
ordered_in(.(X, .(Y, Xs))) → U7(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U7(X, Y, Xs, less_out(X, s(Y))) → U8(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U8(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
U2(Xs, Ys, ordered_out(Ys)) → ss_out(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
ss_in(Xs, Ys) → U1(Xs, Ys, perm_in(Xs, Ys))
perm_in(Xs, .(X, Ys)) → U3(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
U3(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U4(Xs, X, Ys, app_in(X1s, X2s, Zs))
U4(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U5(Xs, X, Ys, perm_in(Zs, Ys))
perm_in([], []) → perm_out([], [])
U5(Xs, X, Ys, perm_out(Zs, Ys)) → perm_out(Xs, .(X, Ys))
U1(Xs, Ys, perm_out(Xs, Ys)) → U2(Xs, Ys, ordered_in(Ys))
ordered_in(.(X, .(Y, Xs))) → U7(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U7(X, Y, Xs, less_out(X, s(Y))) → U8(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U8(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
U2(Xs, Ys, ordered_out(Ys)) → ss_out(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
U71(X, Y, Xs, less_out(X, s(Y))) → ORDERED_IN(.(Y, Xs))
ORDERED_IN(.(X, .(Y, Xs))) → U71(X, Y, Xs, less_in(X, s(Y)))
ss_in(Xs, Ys) → U1(Xs, Ys, perm_in(Xs, Ys))
perm_in(Xs, .(X, Ys)) → U3(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
U3(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U4(Xs, X, Ys, app_in(X1s, X2s, Zs))
U4(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U5(Xs, X, Ys, perm_in(Zs, Ys))
perm_in([], []) → perm_out([], [])
U5(Xs, X, Ys, perm_out(Zs, Ys)) → perm_out(Xs, .(X, Ys))
U1(Xs, Ys, perm_out(Xs, Ys)) → U2(Xs, Ys, ordered_in(Ys))
ordered_in(.(X, .(Y, Xs))) → U7(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U7(X, Y, Xs, less_out(X, s(Y))) → U8(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U8(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
U2(Xs, Ys, ordered_out(Ys)) → ss_out(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
U71(X, Y, Xs, less_out(X, s(Y))) → ORDERED_IN(.(Y, Xs))
ORDERED_IN(.(X, .(Y, Xs))) → U71(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
U71(Y, Xs, less_out) → ORDERED_IN(.(Y, Xs))
ORDERED_IN(.(X, .(Y, Xs))) → U71(Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(less_in(X, Y))
less_in(0, s(X)) → less_out
U9(less_out) → less_out
less_in(x0, x1)
U9(x0)
The following rules are removed from R:
U71(Y, Xs, less_out) → ORDERED_IN(.(Y, Xs))
Used ordering: POLO with Polynomial interpretation [25]:
less_in(0, s(X)) → less_out
POL(.(x1, x2)) = x1 + 2·x2
POL(0) = 2
POL(ORDERED_IN(x1)) = x1
POL(U71(x1, x2, x3)) = x1 + 2·x2 + x3
POL(U9(x1)) = x1
POL(less_in(x1, x2)) = x1 + x2
POL(less_out) = 2
POL(s(x1)) = x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
ORDERED_IN(.(X, .(Y, Xs))) → U71(Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(less_in(X, Y))
U9(less_out) → less_out
less_in(x0, x1)
U9(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
APP_IN(.(X, Xs), Ys, .(X, Zs)) → APP_IN(Xs, Ys, Zs)
ss_in(Xs, Ys) → U1(Xs, Ys, perm_in(Xs, Ys))
perm_in(Xs, .(X, Ys)) → U3(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
U3(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U4(Xs, X, Ys, app_in(X1s, X2s, Zs))
U4(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U5(Xs, X, Ys, perm_in(Zs, Ys))
perm_in([], []) → perm_out([], [])
U5(Xs, X, Ys, perm_out(Zs, Ys)) → perm_out(Xs, .(X, Ys))
U1(Xs, Ys, perm_out(Xs, Ys)) → U2(Xs, Ys, ordered_in(Ys))
ordered_in(.(X, .(Y, Xs))) → U7(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U7(X, Y, Xs, less_out(X, s(Y))) → U8(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U8(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
U2(Xs, Ys, ordered_out(Ys)) → ss_out(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
APP_IN(.(X, Xs), Ys, .(X, Zs)) → APP_IN(Xs, Ys, Zs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ NonTerminationProof
↳ PiDP
↳ PrologToPiTRSProof
APP_IN → APP_IN
APP_IN → APP_IN
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
U31(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U41(Xs, X, Ys, app_in(X1s, X2s, Zs))
PERM_IN(Xs, .(X, Ys)) → U31(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
U41(Xs, X, Ys, app_out(X1s, X2s, Zs)) → PERM_IN(Zs, Ys)
ss_in(Xs, Ys) → U1(Xs, Ys, perm_in(Xs, Ys))
perm_in(Xs, .(X, Ys)) → U3(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
U3(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U4(Xs, X, Ys, app_in(X1s, X2s, Zs))
U4(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U5(Xs, X, Ys, perm_in(Zs, Ys))
perm_in([], []) → perm_out([], [])
U5(Xs, X, Ys, perm_out(Zs, Ys)) → perm_out(Xs, .(X, Ys))
U1(Xs, Ys, perm_out(Xs, Ys)) → U2(Xs, Ys, ordered_in(Ys))
ordered_in(.(X, .(Y, Xs))) → U7(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U7(X, Y, Xs, less_out(X, s(Y))) → U8(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U8(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
U2(Xs, Ys, ordered_out(Ys)) → ss_out(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
U31(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U41(Xs, X, Ys, app_in(X1s, X2s, Zs))
PERM_IN(Xs, .(X, Ys)) → U31(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
U41(Xs, X, Ys, app_out(X1s, X2s, Zs)) → PERM_IN(Zs, Ys)
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PrologToPiTRSProof
U31(Ys, app_out) → U41(Ys, app_in)
U41(Ys, app_out) → PERM_IN(Ys)
PERM_IN(.(X, Ys)) → U31(Ys, app_in)
app_in → U6(app_in)
app_in → app_out
U6(app_out) → app_out
app_in
U6(x0)
From the DPs we obtained the following set of size-change graphs:
ss_in(Xs, Ys) → U1(Xs, Ys, perm_in(Xs, Ys))
perm_in(Xs, .(X, Ys)) → U3(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
U3(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U4(Xs, X, Ys, app_in(X1s, X2s, Zs))
U4(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U5(Xs, X, Ys, perm_in(Zs, Ys))
perm_in([], []) → perm_out([], [])
U5(Xs, X, Ys, perm_out(Zs, Ys)) → perm_out(Xs, .(X, Ys))
U1(Xs, Ys, perm_out(Xs, Ys)) → U2(Xs, Ys, ordered_in(Ys))
ordered_in(.(X, .(Y, Xs))) → U7(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U7(X, Y, Xs, less_out(X, s(Y))) → U8(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U8(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
U2(Xs, Ys, ordered_out(Ys)) → ss_out(Xs, Ys)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
ss_in(Xs, Ys) → U1(Xs, Ys, perm_in(Xs, Ys))
perm_in(Xs, .(X, Ys)) → U3(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
U3(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U4(Xs, X, Ys, app_in(X1s, X2s, Zs))
U4(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U5(Xs, X, Ys, perm_in(Zs, Ys))
perm_in([], []) → perm_out([], [])
U5(Xs, X, Ys, perm_out(Zs, Ys)) → perm_out(Xs, .(X, Ys))
U1(Xs, Ys, perm_out(Xs, Ys)) → U2(Xs, Ys, ordered_in(Ys))
ordered_in(.(X, .(Y, Xs))) → U7(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U7(X, Y, Xs, less_out(X, s(Y))) → U8(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U8(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
U2(Xs, Ys, ordered_out(Ys)) → ss_out(Xs, Ys)
SS_IN(Xs, Ys) → U11(Xs, Ys, perm_in(Xs, Ys))
SS_IN(Xs, Ys) → PERM_IN(Xs, Ys)
PERM_IN(Xs, .(X, Ys)) → U31(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
PERM_IN(Xs, .(X, Ys)) → APP_IN(X1s, .(X, X2s), Xs)
APP_IN(.(X, Xs), Ys, .(X, Zs)) → U61(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
APP_IN(.(X, Xs), Ys, .(X, Zs)) → APP_IN(Xs, Ys, Zs)
U31(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U41(Xs, X, Ys, app_in(X1s, X2s, Zs))
U31(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → APP_IN(X1s, X2s, Zs)
U41(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U51(Xs, X, Ys, perm_in(Zs, Ys))
U41(Xs, X, Ys, app_out(X1s, X2s, Zs)) → PERM_IN(Zs, Ys)
U11(Xs, Ys, perm_out(Xs, Ys)) → U21(Xs, Ys, ordered_in(Ys))
U11(Xs, Ys, perm_out(Xs, Ys)) → ORDERED_IN(Ys)
ORDERED_IN(.(X, .(Y, Xs))) → U71(X, Y, Xs, less_in(X, s(Y)))
ORDERED_IN(.(X, .(Y, Xs))) → LESS_IN(X, s(Y))
LESS_IN(s(X), s(Y)) → U91(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U71(X, Y, Xs, less_out(X, s(Y))) → U81(X, Y, Xs, ordered_in(.(Y, Xs)))
U71(X, Y, Xs, less_out(X, s(Y))) → ORDERED_IN(.(Y, Xs))
ss_in(Xs, Ys) → U1(Xs, Ys, perm_in(Xs, Ys))
perm_in(Xs, .(X, Ys)) → U3(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
U3(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U4(Xs, X, Ys, app_in(X1s, X2s, Zs))
U4(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U5(Xs, X, Ys, perm_in(Zs, Ys))
perm_in([], []) → perm_out([], [])
U5(Xs, X, Ys, perm_out(Zs, Ys)) → perm_out(Xs, .(X, Ys))
U1(Xs, Ys, perm_out(Xs, Ys)) → U2(Xs, Ys, ordered_in(Ys))
ordered_in(.(X, .(Y, Xs))) → U7(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U7(X, Y, Xs, less_out(X, s(Y))) → U8(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U8(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
U2(Xs, Ys, ordered_out(Ys)) → ss_out(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
SS_IN(Xs, Ys) → U11(Xs, Ys, perm_in(Xs, Ys))
SS_IN(Xs, Ys) → PERM_IN(Xs, Ys)
PERM_IN(Xs, .(X, Ys)) → U31(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
PERM_IN(Xs, .(X, Ys)) → APP_IN(X1s, .(X, X2s), Xs)
APP_IN(.(X, Xs), Ys, .(X, Zs)) → U61(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
APP_IN(.(X, Xs), Ys, .(X, Zs)) → APP_IN(Xs, Ys, Zs)
U31(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U41(Xs, X, Ys, app_in(X1s, X2s, Zs))
U31(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → APP_IN(X1s, X2s, Zs)
U41(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U51(Xs, X, Ys, perm_in(Zs, Ys))
U41(Xs, X, Ys, app_out(X1s, X2s, Zs)) → PERM_IN(Zs, Ys)
U11(Xs, Ys, perm_out(Xs, Ys)) → U21(Xs, Ys, ordered_in(Ys))
U11(Xs, Ys, perm_out(Xs, Ys)) → ORDERED_IN(Ys)
ORDERED_IN(.(X, .(Y, Xs))) → U71(X, Y, Xs, less_in(X, s(Y)))
ORDERED_IN(.(X, .(Y, Xs))) → LESS_IN(X, s(Y))
LESS_IN(s(X), s(Y)) → U91(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U71(X, Y, Xs, less_out(X, s(Y))) → U81(X, Y, Xs, ordered_in(.(Y, Xs)))
U71(X, Y, Xs, less_out(X, s(Y))) → ORDERED_IN(.(Y, Xs))
ss_in(Xs, Ys) → U1(Xs, Ys, perm_in(Xs, Ys))
perm_in(Xs, .(X, Ys)) → U3(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
U3(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U4(Xs, X, Ys, app_in(X1s, X2s, Zs))
U4(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U5(Xs, X, Ys, perm_in(Zs, Ys))
perm_in([], []) → perm_out([], [])
U5(Xs, X, Ys, perm_out(Zs, Ys)) → perm_out(Xs, .(X, Ys))
U1(Xs, Ys, perm_out(Xs, Ys)) → U2(Xs, Ys, ordered_in(Ys))
ordered_in(.(X, .(Y, Xs))) → U7(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U7(X, Y, Xs, less_out(X, s(Y))) → U8(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U8(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
U2(Xs, Ys, ordered_out(Ys)) → ss_out(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
ss_in(Xs, Ys) → U1(Xs, Ys, perm_in(Xs, Ys))
perm_in(Xs, .(X, Ys)) → U3(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
U3(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U4(Xs, X, Ys, app_in(X1s, X2s, Zs))
U4(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U5(Xs, X, Ys, perm_in(Zs, Ys))
perm_in([], []) → perm_out([], [])
U5(Xs, X, Ys, perm_out(Zs, Ys)) → perm_out(Xs, .(X, Ys))
U1(Xs, Ys, perm_out(Xs, Ys)) → U2(Xs, Ys, ordered_in(Ys))
ordered_in(.(X, .(Y, Xs))) → U7(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U7(X, Y, Xs, less_out(X, s(Y))) → U8(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U8(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
U2(Xs, Ys, ordered_out(Ys)) → ss_out(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PiDP
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
U71(X, Y, Xs, less_out(X, s(Y))) → ORDERED_IN(.(Y, Xs))
ORDERED_IN(.(X, .(Y, Xs))) → U71(X, Y, Xs, less_in(X, s(Y)))
ss_in(Xs, Ys) → U1(Xs, Ys, perm_in(Xs, Ys))
perm_in(Xs, .(X, Ys)) → U3(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
U3(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U4(Xs, X, Ys, app_in(X1s, X2s, Zs))
U4(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U5(Xs, X, Ys, perm_in(Zs, Ys))
perm_in([], []) → perm_out([], [])
U5(Xs, X, Ys, perm_out(Zs, Ys)) → perm_out(Xs, .(X, Ys))
U1(Xs, Ys, perm_out(Xs, Ys)) → U2(Xs, Ys, ordered_in(Ys))
ordered_in(.(X, .(Y, Xs))) → U7(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U7(X, Y, Xs, less_out(X, s(Y))) → U8(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U8(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
U2(Xs, Ys, ordered_out(Ys)) → ss_out(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
U71(X, Y, Xs, less_out(X, s(Y))) → ORDERED_IN(.(Y, Xs))
ORDERED_IN(.(X, .(Y, Xs))) → U71(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ PiDP
↳ PiDP
U71(X, Y, Xs, less_out(X, s(Y))) → ORDERED_IN(.(Y, Xs))
ORDERED_IN(.(X, .(Y, Xs))) → U71(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
less_in(x0, x1)
U9(x0, x1, x2)
ORDERED_IN(.(X, .(Y, Xs))) → U71(X, Y, Xs, less_in(X, s(Y)))
POL(.(x1, x2)) = 2·x1 + x2
POL(0) = 2
POL(ORDERED_IN(x1)) = 2 + 2·x1
POL(U71(x1, x2, x3, x4)) = x1 + 2·x2 + 2·x3 + x4
POL(U9(x1, x2, x3)) = 2·x1 + x2 + x3
POL(less_in(x1, x2)) = 2·x1 + x2
POL(less_out(x1, x2)) = 2 + x1 + x2
POL(s(x1)) = 2·x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDP
U71(X, Y, Xs, less_out(X, s(Y))) → ORDERED_IN(.(Y, Xs))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
less_in(x0, x1)
U9(x0, x1, x2)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
APP_IN(.(X, Xs), Ys, .(X, Zs)) → APP_IN(Xs, Ys, Zs)
ss_in(Xs, Ys) → U1(Xs, Ys, perm_in(Xs, Ys))
perm_in(Xs, .(X, Ys)) → U3(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
U3(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U4(Xs, X, Ys, app_in(X1s, X2s, Zs))
U4(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U5(Xs, X, Ys, perm_in(Zs, Ys))
perm_in([], []) → perm_out([], [])
U5(Xs, X, Ys, perm_out(Zs, Ys)) → perm_out(Xs, .(X, Ys))
U1(Xs, Ys, perm_out(Xs, Ys)) → U2(Xs, Ys, ordered_in(Ys))
ordered_in(.(X, .(Y, Xs))) → U7(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U7(X, Y, Xs, less_out(X, s(Y))) → U8(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U8(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
U2(Xs, Ys, ordered_out(Ys)) → ss_out(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
APP_IN(.(X, Xs), Ys, .(X, Zs)) → APP_IN(Xs, Ys, Zs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ NonTerminationProof
↳ PiDP
APP_IN → APP_IN
APP_IN → APP_IN
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
U31(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U41(Xs, X, Ys, app_in(X1s, X2s, Zs))
PERM_IN(Xs, .(X, Ys)) → U31(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
U41(Xs, X, Ys, app_out(X1s, X2s, Zs)) → PERM_IN(Zs, Ys)
ss_in(Xs, Ys) → U1(Xs, Ys, perm_in(Xs, Ys))
perm_in(Xs, .(X, Ys)) → U3(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
U3(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U4(Xs, X, Ys, app_in(X1s, X2s, Zs))
U4(Xs, X, Ys, app_out(X1s, X2s, Zs)) → U5(Xs, X, Ys, perm_in(Zs, Ys))
perm_in([], []) → perm_out([], [])
U5(Xs, X, Ys, perm_out(Zs, Ys)) → perm_out(Xs, .(X, Ys))
U1(Xs, Ys, perm_out(Xs, Ys)) → U2(Xs, Ys, ordered_in(Ys))
ordered_in(.(X, .(Y, Xs))) → U7(X, Y, Xs, less_in(X, s(Y)))
less_in(s(X), s(Y)) → U9(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U9(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U7(X, Y, Xs, less_out(X, s(Y))) → U8(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U8(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
U2(Xs, Ys, ordered_out(Ys)) → ss_out(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
U31(Xs, X, Ys, app_out(X1s, .(X, X2s), Xs)) → U41(Xs, X, Ys, app_in(X1s, X2s, Zs))
PERM_IN(Xs, .(X, Ys)) → U31(Xs, X, Ys, app_in(X1s, .(X, X2s), Xs))
U41(Xs, X, Ys, app_out(X1s, X2s, Zs)) → PERM_IN(Zs, Ys)
app_in(.(X, Xs), Ys, .(X, Zs)) → U6(X, Xs, Ys, Zs, app_in(Xs, Ys, Zs))
app_in([], X, X) → app_out([], X, X)
U6(X, Xs, Ys, Zs, app_out(Xs, Ys, Zs)) → app_out(.(X, Xs), Ys, .(X, Zs))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
PERM_IN(.(X, Ys)) → U31(X, Ys, app_in)
U31(X, Ys, app_out) → U41(X, Ys, app_in)
U41(X, Ys, app_out) → PERM_IN(Ys)
app_in → U6(app_in)
app_in → app_out
U6(app_out) → app_out
app_in
U6(x0)
From the DPs we obtained the following set of size-change graphs: